Course Outline
Introduction
- Free and General Purpose vs Not Free or General Purpose
Setting up a Python Development Environment for Data Science
The Power of Matlab for Numerical Problem Solving
Python Libraries and Packages for Numerical Problem Solving and Data Analysis
Hands-on Practice with Python Syntax
Importing Data into Python
Matrix Manipulation
Math Operations
Visualizing Data
Converting an Existing Matlab Application to Python
Common Pitfalls when Transitioning to Python
Calling Matlab from within Python and Vice Versa
Python Wrappers for Providing a Matlab-like Interface
Summary and Conclusion
Requirements
- Experience with Matlab programming.
Audience
- Data scientists
- Developers
Testimonials (5)
The fact of having more practical exercises using more similar data to what we use in our projects (satellite images in raster format)
Matthieu - CS Group
Course - Scaling Data Analysis with Python and Dask
I thought the trainer was very knowledgeable and answered questions with confidence to clarify understanding.
Jenna - TCMT
Course - Machine Learning with Python – 2 Days
Very good preparation and expertise of a trainer, perfect communication in English. The course was practical (exercises + sharing examples of use cases)
Monika - Procter & Gamble Polska Sp. z o.o.
Course - Developing APIs with Python and FastAPI
Exercises were nice
Vyshnavi Iyappan - Red Embedded Consulting Sp. z o.o.
Course - Unit Testing with Python
The explaination