
Los cursos de capacitación locales en vivo dirigidos por un instructor de TensorFlow demuestran a través de la discusión interactiva y la práctica práctica cómo usar el sistema TensorFlow para facilitar la investigación en el aprendizaje automático y hacer que la transición del prototipo de investigación al sistema de producción sea rápida y fácil. TensorFlow entrenamiento TensorFlow está disponible como "entrenamiento en vivo en el sitio" o "entrenamiento en vivo a distancia". La capacitación en vivo en el lugar puede llevarse a cabo localmente en las instalaciones del cliente en Chile o en los centros de formación corporativa de NobleProg en Chile . El entrenamiento remoto en vivo se lleva a cabo a través de un escritorio remoto interactivo. NobleProg: su proveedor de capacitación local
Machine Translated
Testimonios
Realmente aprecié las respuestas claras y claras de Chris a nuestras preguntas.
Léo Dubus
Curso: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
En general, disfruté el entrenador experto.
Sridhar Voorakkara
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me sorprendió el estándar de esta clase, diría que era el estándar de la universidad.
David Relihan
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Muy buena visión general. Go fondo desde Tensorflow por qué funciona como lo hace.
Kieran Conboy
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me gustaron las oportunidades de hacer preguntas y obtener explicaciones más profundas de la teoría.
Sharon Ruane
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Enfoque muy actualizado o CPI (tensor flow, era, learn) para hacer aprendizaje automático.
Paul Lee
Curso: TensorFlow for Image Recognition
Machine Translated
Dada la perspectiva de la tecnología: qué tecnología / proceso podría ser más importante en el futuro; mira, para qué se puede usar la tecnología.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me beneficié de la selección del tema. Estilo de entrenamiento Practica la orientación.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Una amplia gama de temas cubiertos y un conocimiento sustancial de los líderes.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
falta
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Grandes conocimientos teóricos y prácticos de los profesores. La comunicatividad de los formadores. Durante el curso, podrías hacer preguntas y obtener respuestas satisfactorias.
Kamil Kurek - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Parte práctica, donde implementamos algoritmos. Esto permitió una mejor comprensión del tema.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejercicios y ejemplos implementados en ellos.
Paweł Orzechowski - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejemplos y temas discutidos.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Conocimiento sustantivo, compromiso, una forma apasionada de transferir conocimiento. Ejemplos prácticos después de una conferencia teórica.
Janusz Chrobot - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejercicios prácticos preparados por el Sr. Maciej.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Detección de punto malo de identificación humana y placa de circuito
王 春柱 - 中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Demostrar
中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Sobre el área de la cara.
中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Muchos consejos prácticos.
Pawel Dawidowski - ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Mucha información relacionada con la implementación de soluciones.
Michał Smolana - ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Una multitud de consejos prácticos y conocimientos del profesor de una amplia gama de temas de AI / IT / SQL / IoT.
ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Comencé con un conocimiento cercano a cero, y al final pude construir y entrenar mis propias redes.
Huawei Technologies Duesseldorf GmbH
Curso: TensorFlow for Image Recognition
Machine Translated
Tomasz realmente conoce bien la información y el curso estaba bien ritmo.
Raju Krishnamurthy - Google
Curso: TensorFlow Extended (TFX)
Machine Translated
Entrenador era muy bien informado y abierto a las preguntas, le gustaba dibujar diagramas y explicó las cosas de una manera bastante buena
Curso: Deep Learning with TensorFlow 2.0
Machine Translated
Entrenador era muy bien informado y abierto a las preguntas, le gustaba dibujar diagramas y explicó las cosas de una manera bastante buena
Curso: Deep Learning with TensorFlow 2.0
Machine Translated
Algunos de nuestros clientes


















































Programas de los cursos TensorFlow
- Comprender la estructura y los mecanismos de despliegue de TensorFlow .
- Ser capaz de realizar tareas de configuración / entorno de producción / arquitectura y configuración.
- ser capaz de evaluar la calidad del código, realizar la depuración, monitoreo
- Ser capaz de implementar producción avanzada como modelos de capacitación, creación de gráficos y registro.
- Comprender la estructura y los mecanismos de despliegue de TensorFlow .
- realizar tareas de instalación / entorno de producción / arquitectura y configuración.
- evaluar la calidad del código, realizar depuración, monitoreo
- Implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro.
- Capacitar, exportar y servir varios modelos de TensorFlow
- Pruebe e implemente algoritmos con una única arquitectura y un conjunto de API
- Extender TensorFlow Serving para servir a otros tipos de modelos más allá de los modelos TensorFlow
- Parte de conferencia, discusión parcial, ejercicios y práctica sin uso
- Para solicitar una formación personalizada para este curso, póngase en contacto con nosotros para organizar.
- tener un buen conocimiento de las redes neuronales profundas (DNN), CNN y RNN
- Comprender la estructura y los mecanismos de implementación de TensorFlow
- ser capaz de llevar a cabo tareas de instalación / entorno de producción / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración, monitoreo
- ser capaz de implementar producción avanzada como modelos de capacitación, creación de gráficos y registro
- Instale y configure TensorFlow 2.0.
- Comprenda los beneficios de TensorFlow 2.0 sobre las versiones anteriores.
- Construir modelos de aprendizaje profundo.
- Implemente un clasificador de imagen avanzado.
- Implemente un modelo de aprendizaje profundo en la nube, dispositivos móviles e IoT.
- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.
- Para solicitar una capacitación personalizada para este curso, contáctenos para organizarlo.
- Para obtener más información sobre TensorFlow , visite: https://www.tensorflow.org/
-
Construir y entrenar modelos de aprendizaje de máquina con TensorFlow.js.
Ejecuta los modelos de aprendizaje de máquina en el navegador o bajo Node.js.
Retirar los modelos de aprendizaje de máquina preexistentes utilizando datos personalizados.
-
Lecciones y discusiones interactivas.
Muchos ejercicios y prácticas.
Implementación de manos en un entorno de laboratorio en vivo.
-
Para solicitar una formación personalizada para este curso, por favor contacta con nosotros para organizar.
-
Crea un modelo de detección de fraude en Python y TensorFlow.
Construir regresión lineal y modelos de regresión lineal para predecir el fraude.
Desarrollar una aplicación de inteligencia artificial end-to-end para analizar los datos de fraude.
-
Lecciones y discusiones interactivas.
Muchos ejercicios y prácticas.
Implementación de manos en un entorno de laboratorio en vivo.
-
Para solicitar una formación personalizada para este curso, por favor contacta con nosotros para organizar.
-
Instalar y configurar TFX y soportar herramientas de terceros.
Utilice TFX para crear y gestionar un tubo de producción ML completo.
Trabajar con los componentes de TFX para realizar la modelización, la formación, el servicio de la inferencia y la gestión de los despachos.
Desploy funciones de aprendizaje de máquina a aplicaciones web, aplicaciones móviles, dispositivos IoT y más.
-
Lecciones y discusiones interactivas.
Muchos ejercicios y prácticas.
Implementación de manos en un entorno de laboratorio en vivo.
-
Para solicitar una formación personalizada para este curso, por favor contacta con nosotros para organizar.
-
Al final de este curso, los participantes podrán:
En la parte inferior de la parte inferior de la parte inferior de la parte inferior de la parte inferior de la parte inferior de la parte inferior de la parte inferior de la parte inferior de la parte inferior.
Utilice OpenShift para simplificar el trabajo de la iniciación de un Kubernetes cluster.
Crea y implementa un Kubernetes pipeline para la automatización y la gestión de los modelos ML en la producción.
Treinar y implementar TensorFlow modelos ML a través de múltiples GPUs y máquinas que funcionan en paralelo.
Póngase en contacto con los servicios de nube público (por ejemplo, los servicios de AWS) desde el interior OpenShift para ampliar una aplicación ML.
-
Lecciones y discusiones interactivas.
Muchos ejercicios y prácticas.
Implementación de manos en un entorno de laboratorio en vivo.
-
Para solicitar una formación personalizada para este curso, por favor contacta con nosotros para organizar.
Last Updated: